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A Graph Theoretical Basis for Structural Chemistry. 
I. Structures Based on Trivalent Graphs with 10 Vertices 
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This paper is the first in a series concerned with a particular graph theoretical scheme for enumeration and 
derivation of structures of prescribed form. The problem spoken to by this work is that of finding a unique 
formal procedure for generating all distinct (i.e. non-isomorphic) graphs of a given number of vertices and 
prescribed valency. Here the scheme is outlined as applied to a search for regular trivalent graphs, some of 
which correspond to trivalent polyhedra. A systematic procedure for obtaining the number of equivalence 
classes of the adjacency matrices associated with trivalent graphs of n points is described. The procedure is of 
general applicability, though no proof of its correctness is offered. Instead, a number of examples are 
discussed, and its application is illustrated. The scheme is based on consideration of unique matrices 
associated with graphs which in turn are determined so that the corresponding binary code obtained by 
reading the rows of the matrix from left to right and from top to bottom represents the smallest possible 
binary code. Part of the scheme consists in finding all acceptable matrices, testing them for isomorphism, and 
selecting those which satisfy additional restrictions and ensure that the derived graph represents a structure 
of interest. 
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Introduction 

Graph theory is concerned, among other problems 
associated with connectivity, with enumeration and 
construction of structures of prescribed form. As the 
number of atoms in a structure increases, omissions 
and duplications are more likely; great care must there- 
fore be exercised to avoid these errors. The pictorial 
representations of structures may appear distinctive 
when in fact the structures are not. In order to eliminate 
any possible duplicates, one needs a reliable test for 
graph isomorphism. Lack of a suitable procedure has 
plagued many previous applications, leaving some 
uncertainty about the reported data. For example, the 
number of trivalent polyhedra with n = 18 vertices was 
believed to be 1250 and has been revised to 1249, but 
even the revised figure, derived by use of a computer, is 
uncertain.* The problem of recognizing identical graphs 
is not simple even for relatively small graphs. For 
example the two trivalent graphs with n = 10 vertices 

initially appeared as distinctive, but were soon 
recognized as identical (Balaban, 1966, 1967). One can 
therefore anticipate difficulties in recognizing iso- 

* The value 1250 was reported by Brfickner (1900); the revised 
figure of 1249 is due to Grace (1965). For additional comments see 
Lederberg (1966). 

morphs when the number of vertices in a structure 
increases. These difficulties may account for the fact 
that no list of trivalent graphs with n = 12 vertices has 
been reported, despite the fact that their number (85) is 
by no means excessive.* Errors due to omissions are 
even more troublesome to correct than errors due to 
duplication because they are the result of faults of the 
algorithm adopted in the search. Hence, one needs 
some strong insurance that a method is free of such 
limitations, and, in addition, one needs a simple test of 
isomorphism to verify the results. Below we outline a 
general procedure for enumeration and construction of 
structures which satisfies the above requirements. 

Outline of  the method 

The basis of our procedure is unique adjacency 
matrices which can each be assigned to specific graphs; 
these matrices follow from a canonical labeling of 
vertices. The form of the adjacency matrix of a graph 
depends on the assumed labels of  the vertices. The 
adjacency matrix is an n x n matrix whose entries are 
either ones or zeros, depending on whether the pair of 
vertices is connected (1) or not (0). There are n! 
different labelings; the number of distinctive matrices, 
however, will depend on the presence of equivalent 
vertices. Among different matrices one can single out 

* Balaban (1972) gives a list of 32 planar trivalent graphs only. 
A partial list of trivalent graphs (including multigraphs but 
excluding 1-connected graphs) has been also given by Lederberg 
(1965). 
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the matrix which corresponds to the smallest binary 
code when the entries are read from left to right and 
from top to bottom and use it as a unique descriptor 
(Randi6, 1974). For the procedure to be practical, one 
must show that the unique matrix can be found without 
screening n! possibilities. An algorithm that can 
accomplish the task has been suggested. The algorithm 
is essentially based on a search for labels in an 
unlabeled graph that ensures for each row of the matrix 
in succession that it correspond to the smallest binary 
code (Randi6, 1977).* We will illustrate the derivation 
of labeling which produces a unique matrix on a convex 
polyhedron with eight vertices (Fig. 1). In order to 
reduce labor, we will use easily recognizable symmetry 
properties of the graph. An inspection of the pictorial 
diagram reveals only three non-equivalent vertices 
(shown as a, b, and c in Fig. 1). The label 1 can be 
assigned to any of the three non-equivalent sites, as 
shown at the top of Fig. 1. Only one of the three 
possibilities will later qualify for the smallest binary 
label, but at this initial stage we must consider all 

* A brief account of the algorithm is to be found in Randi6 (1974). 
It should not be confused with an alternative algorithm discussed 
there at some length, which is based on permutation of rows and 
columns of an already labeled graph. It has been found since that 
such an approach does not always converge to an absolute 
minimum (Mackay, 1975). 

Q 

c c 
I 

I 

7 7 

1, 1 

5 5 

Fig. 1. Assignment of labels corresponding to the smallest binary 
code for an eight-vertices trivalent graph. The possibilities arising 
from permutations of labels among equivalent vertices are 
suppressed. 

conceivable alternatives. Each of the initial cases will in 
a general situation lead to 3! possibilities for assign- 
ments of the largest labels 6, 7, and 8. For the first 
alternative we show three different assignments of the 
largest labels; the remaining three, because of the lateral 
symmetry of the figure, can be simply derived by 
exchanging left with right. Notice that in each case we 
generated two vertices already having two assigned 
labels. Hence the next smallest label (2) requires only a 
single new large label (5), but in order to have the 
second row of the adjacency matrix represent the 
smallest binary code from the available sites, we must 
select one in which the already assigned labels belong to 
the largest possible alternative - since this ensures the 
smallest number as a code. It follows therefore that 
label 2 should have as its neighbors 5,7,8 rather than 
5,6,8 or 5,6,7. Only two of the three considered cases 
have the desired environment and require further 
pursuit. Of the two alternatives so derived we see 
immediately that only the first possibility will lead to the 
smaller code for the third row, giving for neighbors of 
label 3 the numbers 4,6,8; the second possibility will 
result in neighbors 4,6,7 and thus produce a larger 
binary code. In this way we have arrived in a few steps 
at the best possible labeling that follows the particular 
assignment of label 1. To complete the search, all other 
alternatives that can arise by placing label 1 in other 
non-equivalent sites must be fully examined. However, 
we immediately see that the alternative sites cannot 
produce a smaller code. For the second alternative 
case, we would have for label 1 a site with adjacent 
labels 7 and 8 which would make the second row as 
small as in the first case, but would make the third row 
correspond to a larger binary code, since label 3 cannot 
be adjacent to both 8 and 6, as was possible in the first 
case. The last alternative for label 1 makes the second 
row larger, as the label 2 must have two newly assigned 
labels. In order to appreciate the efficiency of the 
algorithm one should observe how many permutational 
possibilities have been discarded at each successive 
step: we have examined here fewer than a dozen 
possibilities from over 40 000, and even those under 
consideration when found unproductive have been 
abrogated at the earliest stage possible. 

For our use here it is important that the procedure 
uniquely assign a matrix to a graph so that any two 
graphs can be tested for isomorphism in a relatively 
straightforward way. An alternative viewing of the iso- 
morphism problem is that of ordering given graphs in a 
sequence. Obviously if two graphs fall in the same place 
in the sequence they are isomorphic. The ordering 
which we consider is of a lexicographic nature: each 
unique matrix represents a binary number, if interpreted 
by reading its rows from left to right and from top to 
bottom. Such numbers can be sequenced in an 
increasing order. Since any n × n matrix has a place 
somewhere in the sequence, if we can generate all such 
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matrices we ensure that no omission will occur. By 
restricting our selection to those matrices that corres- 
pond to the smallest binary code we only eliminate 
duplicates. 

In our constructions the only criterion used is that 
which requires the labels to give the smallest possible 
binary code: a structure is rejected if another alter- 
native in the process of construction already defines the 
same connectivity. This guarantees that no omissions 
will result, and duplicates can be recognized by testing 
whether a derived labeling complies with the request for 
a minimal binary label. The above is, then, the essence 
of the procedure which we will apply to construction of 
all trivalent graphs with 10 and fewer vertices in order 
to illustrate the practicality of the approach. 

Construction of graphs of particular form is of 
interest in various problems of chemistry and physics, 
and numerous specific applications have been con- 
sidered. In connection with studies of valence isomer- 
ism of conjugated hydrocarbons Balaban (1970, 1972, 
1973, 1974) has worked out many examples. In his 
approach Balaban used pictorial and geometrical 
arguments. In contrast, our scheme is of an analytical 
nature, based on manipulation of matrices, and hence is 
suitable to computer processing - an important 
advantage. 

Trivalent graphs with six vertices 

Before discussing the question of trivalent graphs with 
six vertices, let us point out that the smallest trivalent 
graph has four vertices; there is only one such graph, 
and only one matrix that satisfies the requirement of 
having in each row and column three non-zero entries: 

0 1 1 1 )  
1 0 1 1 
1 1 0 1 
1 1 1 0 . 

The graph corresponds to a tetrahedron. 
The search for trivalent graphs with six vertices we 

now view as a search for all six by six matrices which 
are symmetric, have zero on the diagonal, and have 
three non-zero entries in each row and column. 
Furthermore, each matrix must correspond to the 
smallest possible binary code for the structure, which of 
course eliminates an enormous number of undesired 
possibilities from consideration. Obviously the first row 
in all acceptable matrices has to be 

0 0 0 1 1 1  

as this is the only smallest number consistent with the 
valency requirement. The above first row allows us to 
construct a part of the graphs sought; it shows that 
vertex (1) has three neighbors, (6), (5), and (4): 

I 

6 5 4 

Now we proceed to consider acceptable forms for the 
second row of adjacency matrices. Since the matrix 
must be symmetric and have zero at the diagonal, we 
consider only four-digit binary numbers. This results in 
four distinctive possibilities, which, combined with the 
already established form for the first row, are shown 
below: 

0 0 0 1  1 1 0 0 0 1  1 1 0 0 0 1  1 1 0 0 0 1  1 1 
0 0 0 1  1 1 0 0 1 0 1  1 0 0 1  1 0 1  0 0 1  1 1 0 .  

Each of the partially derived adjacency matrix defines a 
fragment of a graph: 

I I I I 

2 2 3 2 3 2 3 

We see immediately that only two non-isomorphic 
fragments are produced and that the last two cases 
represent a duplication. Hence, in the continuation of 
the search they are excluded from consideration. Here, 
we eliminated the duplications by inspecting the 
pictures, which is not an analytical procedure; let us 
also explain how this isomorphism can be recognized 
from the partial matrices. In the following we pretend 
that we are not aware that the three last graphs are iso- 
morphic. From the available partial matrices we can 
construct partial graphs, which we will, however, leave 
unlabeled: 

We will consider each of the three graphs separately 
and will treat them as completed. The test for iso- 
morphism consists in a search for the unique labels. In 
Fig. 2 the search is outlined for the first of the three 
graphs. Obviously label 1 belongs to vertices of the 
lowest valency, which in this case are terminal vertices. 
Their adjacent vertex must then have label 6, which 
gives for the first row of the matrices sought: 

0 0 0 0 0 1 .  
There are two such terminal vertices; hence, two 
assignments need to be further considered. Each of the 
two possibilities predetermines the site for label 2 for 
the remaining terminal vertex, which has as its neighbor 
the largest available label 5. In the next step label 3 has 
at each of the alternatives two acceptable sites, leaving 
the last unlabeled vertex to be 4. So we end in this case 
with four possible labelings. With completed assign- 
ment of the labels one can construct the corresponding 
adjacency matrices. We immediately obtain a single 
matrix 
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° ° ° ° 1/ 
0 0 0 0 , 0  

0 0 0 1 
0 0 0 1 
1 1 1 0 
0 1 1 0 

which describes all four distinctive labelings. As is 
known, this only means that the particular graph has 
equivalent vertices, but since here we are not interested 
in the symmetry properties of the graph we may adopt 
any of the resulting labelings. We have completed our 
search and have obtained the unique adjacency matrix 
for the first of the three graphs to be tested for iso- 
morphism. The process is now repeated for the second 
graph, and finally for the third graph, and it is clear that 
in this case we will again obtain the same matrix shown 
above. One therefore concludes that the graphs under 
examination are isomorphic; hence, the last two can be 
eliminated from further examination since they are 
duplicates and correspond to larger binary codes. 
When considering relatively simple graphs it may be 
more expedient to use pictorial representations of 
partial graphs in recognizing impossible graphs (i.e. 
those violating the valency requirements) and duplic- 
ates - which is not an analytical procedure. However, it 
is important also to realize that pictorial representations 
are not essential, and a purely analytical formalism is 
available. 

We now proceed to search for an acceptable third 
row of the unique matrices. The constraints (symmetric 
matrix and zero diagonal elements) limit the number of 
possibilities to only four, one from the first case and 
three from the second case: 

0 0 0 1 1 1  0 0 0 1 1 1  0 0 0 1 1 1  0 0 0 1 1 1  
0 0 0 1 1 1  0 0 1 0 1 1  0 0 1 0 1 1  0 0 1 0 1 1  
0 0 0 1 1 1  0 1 0 0 1 1  0 1 0 1 0 1  0 1 0 1 1 0 .  

The corresponding fragments of graphs associated with 
the above partial adjacent matrices are: 

I I I I 

2 3 2 3 2 3 2 3 

The first (partial) matrix completely determines the first 
graph, which is known as Ka, 3, a bipartite graph of 
Kuratowski (1930) important in characterization of 
non-planar graphs. That the graph construction has 
been completed for this case can be deduced 
analytically from a count of the number of edges so far 
constructed: this is given by the number of non-zero 
entries above the main diagonal and should be nine, as 
it is.* The second matrix corresponds to a graph which 

* This is obvious: the number of entries in a particular row points 
to the valency of the corresponding vertex, each entry appears twice 
(as the adjacency matrix is symmetric) and correspond to a bond 
(edge). For a formalistic exposition see Theorem 2.1 in Harary 
(1968). 

cannot satisfy the valency requirement, as the pending 
vertex (4) cannot satisfy its required valency of three. 
That the second graph is unacceptable can also be 
shown by an examination of the partial adjacency 
matrix: 

0 0 0 1 1 1 
0 0 1 0 1 1 
0 1 0 0 1 1 
1 0 0 0 
1 1 1 0 
1 1 1 O. 

The unspecified sites in the matrix have to satisfy the 
condition that the sum of entries in any row or column 
is three (as well as that the number of entries above the 
diagonal is nine), but this is not possible. Finally, the 
last two partial graphs are isomorphic; hence, only the 
first has to be considered. It is easy to see that in the 
next step (fourth row) vertices 4 and 5 must be linked 
as the only possibility consistent with the requirements 
of the problem. Hence, in this case of six vertices we 
have obtained as solutions only two distinct graphs 
(Fig. 3): 

0 0 0 1 1 l 0 0 1 0 1 l 
0 0 1 1 1 0 1 0 
1 1 0 0 0 1 0 1 
1 1 0 0 1 0 1 0 
1 1 0 0 1 1 0 0 • 

6 

6 5 

5 2 5 2 6 I 6 I 

Fig. 2. Derivation of all acceptable labelings of a graph associated 
with the unique adjacency matrix as a step in a test for iso- 
morphism. A multiple labeling only indicates the presence of 
equivalent vertices, the resultant matrix serves as a comparison 
with other matrices so derived. 

4 
I ~..---0 

I 2 3 ( ~ - - ~ A  

6 5 4 
6 

Fig. 3. The only trivalent graphs with n = 6 vertices. 
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The first is the non-planar graph of Kuratowski, the 
second corresponds to a trigonal prism, i.e. a poly- 
hedron. For a trivalent graph to correspond to a poly- 
hedron, it must be planar and three-connected, i.e. it 
will not split into isolated fragments unless at least three 
vertices are excised (Steinitz, 1922). 

Graphs with n - -  8 vertices 

By increasing the number of vertices, the number of 
combinatorial possibilities to be examined increases, as 
does the number of acceptable solutions. In Fig. 4 and 
Fig. 5 we summarize the searching process for trivalent 
graphs with eight vertices. At each step, which is 
characterized by the number of rows of the partial 
matrices under construction, we have eliminated cases 
which are isomorphic to already included partial 
graphs. With two rows this gives three non-isomorphic 
graphs as depicted in Fig. 4 at the top. Here we have 
already eliminated from considerations matrices with 
the initial rows: 

0 0 0 0 0  1 1 1 
0 0  1 1 1 0 0 0 .  

Matrices with such a beginning would, as one can 
verify by a trial, lead only to duplicates. They can be a 
priori eliminated as not satisfying the fundamental 
requirement of corresponding to the smallest possible 
binary code. Namely, here the label 2 has not been used 
for the available site adjacent to an already assigned 

0 0 0 0 0 1 I I 0 0 0 0 0 1 1 I 0 0 0 0 0 1 I I 

0 0 0 0 0 1 I I 0 0 0 0 1 0 1 I 0 0 0 1 I 0 0 1 

I I t 

0 0 0 0 0 1  1 1 0 0 0 0 0 1  1 1 0 0 0 0 0 1  1 1 
0 0 0 0 0 1  I I 0 0 0 0 0 1  I 1 0 0 0 0 0 1  I I 

0 0 0 0 I 0 I I I 0 0 0 0 I 0 I I 0 0 0 I 11 o o I 

I 

0 0 0 0 0 1  I I 0 0 0 0 0 1  I I 0 0 0 0 0 1  I I 

0 0 0 0 1 0 1  1 0 0 0 0 1 0 1  1 0 0 0 0 1 0 1  1 
0 0 1  1 I 0 0 0 0 0 0 1 0 0 1 I 0 0 0 1 1 o I 0 1 

8 I 6 8 6 

2 3 2 3 2 3 

0 0 0 0 0 1 1 1  

0 0 0 0 1 0 1 1  

0 0 0 1 1 1 0 0  

8 
2 6 

4 

Fig. 4. The initial steps in a search ~r all trivalent graphs with n = 
8 ve~ices. 

label (6, 7, or 8) which would reduce the number of new 
labels to be introduced at this stage to two. In other 
words, we can introduce the concept of an effective 
valency, which is determined by the number of new 
labels required in a partially assigned graph, and say 
that the above choice of assignments is unacceptable 
since vertices of lower effective valency available have 
been ignored. In fact, the existing partial assignment 
dictates that the label 2 be adjacent to label 10, as the 
optimum. Any other choice, like the above, or 

0 0 0 0 0  ! 11 
0 0 0 1 1 0 1 0  

overlooks the availability of a site that would produce a 
smaller binary code. 

The three distinct partial graphs of the top of Fig. 4 
now need to be further examined. By adding the third 
row we were able to construct seven partial graphs: 
three originate from the first graph, four from the 
second graph, and none from the third graph, as can be 
easily detected by comparing the first two rows of the 
new and old partial graphs. The third graph only 
produces duplicates which are eliminated once 
recognized as such. The efficiency of the procedure 
would be further enhanced if one could foresee such an 
outcome at the previous stage, but at the moment it is 
not clear how to recognize the situation, and in order 
not to omit some acceptable structures, it is imperative 
to avoid shortcuts that are not fully understood. The 
first of the seven partial graphs is unacceptable, since it 
has already produced an isolated fragment (all the 
vertices present have their valencies saturated) and 

0 0 0 0 0 1 1 1  0 0 0 0 0 1 1 1  

0 0 0 0 0 1 1 1  0 0 0 0 0 1 1 1  

0 0 0 1 1 0 0 1  0 0 0 1 1 0 0 1  

0 0 1 0 0 1 1 0  0 0 1 0 1 0 1 0  

8 ~ 6  8 2 i ~ ~ ~  6 

4 4 ~ 0 5  

0 0 0 0 0 1 1 1  

0 0 0 0 1 0 1 1  

0 0 0 0 1 1 0 1  

O O O O 1 1 1 0  

8 6 

2 3 

0 0 0 0 0 1 I I 0 0 0 0 0 1 I I 

0 0 0 0 1 0 1 I 0 0 0 0 1 0 1 I 

0 0 0 1 0 1 0 1 0 0 0 1 0 I 0 1 

00 i 0 0 1  I 0 0 0 1 0 1 0 1 0  

I I 

2 3 

5O ~4 

0 0 0 0 0 1 1 1  
0 0 0 0 1 0 1 1  
0 0 0 1 0 1 0 1  
0 0 1 0 1 1 0 O  

I 

4 

0 0 0 0 0 1 1 1  

0 0 0 0 1 0 1 1  

0 0 0 1 1 1 0 0  

0 0 1 0 1 1 0 0  

I 

2 3 

Fig. 5. A later stage of the search ~r the trivalent graphs with n = 
8 vertices. 
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would eventually result in a disconnected graph 
(providing that in the continuation of the construction 
valency conditions for the remaining vertices could be 
met - which is not the case here). Similarly, the second 
of the seven partial graphs is not productive as a closer 
look reveals that the fourth vertex (to be added) cannot 
saturate its valency, the same being also the case with 
the fifth partial graph. By considering acceptable forms 
for the fourth row, seven new partial graphs result from 
the four partial graphs that yielded an acceptable 
alternative. These are depicted in Fig. 5, and their 
relation to graphs of the previous step can easily be 
detected by comparing the first three rows. The graph 
of the cube is fully completed at this step, i.e. all vertices 
and all edges have been found. All other cases have also 
been fully determined, but one of edges still needs to be 
inserted. This is evident from the pictorial forms, but 
can also easily be detected by summing the number of 
non-zero entries above the main diagonal, which should 
in this case be 12 if the construction is complete. In the 
process, possibilities that result in duplicates again have 
been abrogated. We left out also some permutations 
that may seem to have been worth consideration. For 
instance, after the first two partial graphs of Fig. 5 one 
may expect the partial matrix: 

0 0 0 0 0 1 1 1 
0 0 0 0 0 1 1 1 
0 0 0 1 1 0 0 1 
0 0 1 0 1 1 0 0 .  

This possibility has not been considered here because 
the smallest label under examination (4) has not used 
the largest available neighbor - hence, there is another 
labeling which can produce a smaller binary code 
(which is shown as the second in Fig. 5). 

Finally, when the missing (predetermined) edge is 
inserted we obtain, in all, five distinctive trivalent 
graphs with eight vertices. Except for the first and the 
fourth partial graphs of Fig. 5, which have pendant 

vertices and therefore cannot satisfy the valency 
condition, all the other cases result in acceptable 
solutions. The resulting graphs are presented in Fig. 6 
together with the associated labeling. Examination of 
the corresponding adjacency matrices would reveal that 
only the graph of the cube is bipartite. Another 
interesting consequence of the unique matrices is that 
they allow a natural (lexicographical) ordering of the 
derived structures. Such an order is uniquely derived by 
sequencing graphs by the increasing magnitude of the 
derived binary code. Hence, the position of a graph in 
the sequence is not arbitrary, and the ordinal numbers 
may be viewed as structure parameters. All regular 
graphs then can be represented by a symbol (v", k) 
where v is the valency, n the number of vertices, and k 
the position in the sequence of unique binary codes. 

Graphs with n = 10 vertices 

As another example of the procedure, we report the 
results for regular trivalent graphs with n = 10 vertices. 
These are still relatively small graphs, and most of the 
time the required test for isomorphism can be replaced 
by visual inspection. Recognition of equivalent vertices, 
and edges, is of help, but symmetry properties of graphs 
may not be apparent (Randi6, 1976; Dunitz & Prelog, 
1968). In Fig. 7 we have summarized the results of the 
search for trivalent graphs with ten vertices. In all there 
are 19 distinctive graphs (shown together with the 
corresponding labeling of vertices) which are already 
ordered according to the increase of the magnitude of 
the unique binary code. It is interesting that in a 
number of instances graphs with a common fragment 
are in proximity in the sequence, as are the pairs 2,3; 
7,8; and 15,16. Some of the properties of the graphs of 
Fig. 7 are summarized in Table 1. 

Discussion 

I i i 

6 7 

4 2 

5 3 5 

The number of trivalent graphs has increased from 5 
with n = 8 vertices to 19 with n = 10 vertices, which 
indicates a rapid growth with the increase of the 
number of vertices involved. A closer comparison of the 
graphs with n = 8 and those with n = 10 vertices shows 

! ! 

4 5 

Fig. 6. Acceptable solutions (trivalent graphs with n = 8 vertices) 
with labels defining the unique matrices. 

Table 1. Properties of  the graphs of  Fig. 7 

Planar: 
Non-planar: 

Bipartite: 
Polyhedra: 
l-connected: 
2-connected: 
3-connected: 
Other: 

(4), (6), (7), (8), (11), (14),(IS), (16) 
(1), (2), (3),(5), (9),(10),(12),(13),(17), 

(18), (19) 
(2), (5) 
(6), (7), (8), (14) 
(4) 
(1), (11), (15), (16) 
(2),(3), (6),(8),(10),(13), (14), (18),(19) 
(5), (7), (9), (12), (17) 
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5 

9 2 (I) 
8 

(4) 

I 

(2) 5 ~ .  

7 -  3 ~ 6  

4 5 
13) 

IO 3 I 

8 9 

2 6 

(5) 

I 6 5 

4 5 

(7) 

8 , ~ 2 _ _  

I Io  
110) 

I IO 

9 

4 

I0 

2 9 

7 5 

5 8 

(13) 
I0 

Io 2 

(8) (9) I0 2 

9 8 8 3 
(11) (12) 

I Io I0 

5 3 3 6 
(14) (15) 

(16) 

I 2 7 

8 7 7 " ~ ~ ~ 3  9 3 2 5 ,5 

5 4 ,4 

(17) (18) 
2 7 

(19) 
Fig. 7. Acceptable solutions (trivalent graphs with n = I0 vertices) 

with the labels defining the unique matrices and ordered by the 
magnitude of the corresponding binary code. 

that a number of the latter can be considered as derived 
from the former. 

By examining the individual graphs in Fig. 7 we 
observe that some graphs are 1-connected, some are 2- 
connected and some are 3-connected. A graph is said to 
be n-connected if removal of n vertices with their 
incident edges produces a disconnected residual. We 
may now consider as characteristic fragments of a 
graph those fragments that can be isolated by such 
removal of a vertex or vertices with incident edges. 
Since the fragments themselves may be viewed as 
smaller graphs (with variable valency), we see that a 
sizable portion of trivalent graphs can be generated in a 
relatively straightforward way from smaller graphs. 
This is important to recognize, since the effort for 
construction of larger graphs which are regular and of 
the degree 3 may then be concentrated on construction 
of those graphs which cannot be generated in this way, 
i.e. graphs that require more than three cuts to be 
disconnected. We will refer to these as cages or caged 
structures, which is close to an intuitive use of the term 
in organic chemistry.* The smallest such trivalent 
graph is the cube itself, which appears as a cage. We 
have redrawn the five cases in Fig. 8 to show that they 
all can be viewed as consisting of two five-membered 
rings which are interconnected in different modes. It 

*The term is used in the mathematical literature in more 
restrictive sense, cf. Harary (1968, p. 174). 

(6) (7) 

(9) (12) 

(17) 

Fig. 8. The five trivalent graphs with n = 10 vertices which cannot 
be fragmented by cutting three or fewer edges. 
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remains to be seen if similar regularities will also hold 
for graphs with n = 12 and more vertices. 

The purpose of this work has been to demonstrate an 
analytical route to generation of graphs of prescribed 
form. In the series of papers that will follow the subject 
will be elaborated and applied to problems of interest in 
chemistry, such as construction of all molecular 
skeletons of prescribed valency distribution, construc- 
tion of all polyhedra of a given size, construction of 
cluster forms of interest in chemistry of heavy elements, 
and construction of two-dimensional and three- 
dimensional connected networks of interest in crystal 
chemistry. The application can be extended to struc- 
tures having multiple bonds and loops, as well as to 
directed graphs when appropriate modifications are 
introduced which take into account the new constraints 
on the adjacency matrices. Clearly, some ramifications 
might be of more interest for their mathematical or 
chemical, rather than their structural, aspect (for 
example, enumerating polyhedra or various isomers); 
as these arise they will be briefly mentioned, and the 
interested reader will be referred to more complete 
accounts of such studies presented elsewhere. 

The author wishes to thank Dr D. H. Rouvray 
(Mtilheim, Germany) for comments which led to an 
improvement of the presentation of the material. This 
work was supported by the US Department of Energy, 
Division of Basic Energy Sciences. 
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A new method is described for the calculation of Cartesian coordinates for n points given the n x n matrix of 
interpoint distances. The algorithm is faster than some earlier methods, and it is remarkably stable with 
respect to both numerical roundoff errors and errors in the given distance matrix. The resultant coordinates 
have their origin near the center of mass and axes approximately along the three principal rotational axes. 
The calculation is described of distances to the center of mass directly from the distance matrix. Results of 
computer trials of the algorithm are given. 

Introduction 

Our recent work (Crippen, 1977a,b; Kuntz, Crippen & 
Kollman, 1977) on the calculation of the conformation 
of proteins by the 'distance geometry' approach has as 

an important step the computation of atomic coordi- 
nates given a trial matrix of interatomic distances. The n 
x n trial matrix D is chosen to be elementwise bounded 
by a matrix of upper bound distances U and one of 
lower bound distances L, but even so, it is usually 


